- Distributes One Differential Clock Input to One LVPECL Differential Clock Output and One LVCMOS Single-Ended Output
- Programmable Output Divider for Both LVPECL and LVCMOS Outputs
- 1.6-ns Output Skew Between LVCMOS and LVPECL Transitions Minimizing Noise
- 3.3-V Power Supply (2.5-V Functional)
- Signaling Rate Up to $800-\mathrm{MHz}$ LVPECL and 200-MHz LVCMOS
- Differential Input Stage for Wide Common-Mode Range Also Provides VBB Bias Voltage Output for Single-Ended Input Signals
- Receiver Input Threshold $\pm 75 \mathrm{mV}$

- 16 -Pin QFN Package ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)

description

The CDCM1802 clock driver distributes one pair of differential clock input to one LVPECL differential clock output pair YO and $\overline{\mathrm{YO}}$ and one single-ended LVCMOS output Y . It is specifically designed for driving $50-\Omega$ transmission lines. The LVCMOS output is delayed by 1.6 ns over the PECL output stage to minimize noise impact during signal transitions.

The CDCM1802 has two control pins, S0 and S1, to select different output mode settings. The S[1:0] pins are 3-level inputs. Additionally, an enable pin EN is provided to disable or enable all outputs simultaneously. The CDCM1802 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

For single-ended driver applications, the CDCM1802 provides a VBB output pin that can be directly connected to the unused input as a common-mode voltage reference.

CDCM1802

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER,

 LVPECL I/O + ADDITIONAL LVCMOS OUTPUTSCAS759 - APRIL 2004

functional block diagram

Terminal Functions

TERMINAL		1/0	DESCRIPTION
NAME	NO.		
EN	16	I (with $60-\mathrm{k} \Omega$ pullup)	ENABLE. Enables or disables all outputs simultaneously; The EN pin offers three different configurations: tie to GND (logic 0), external 60-k pulldown resistor (pull to $V_{D D} / 2$) or left floating (logic 1); EN = 1: outputs on according to S 0 and S 1 setting $\mathrm{EN}=$ VDD/2: outputs on according to S 0 and S 1 setting $\mathrm{EN}=0$; outputs $\mathrm{Y}[1: 0]$ off (high-impedance) see Table 1 for details.
$\frac{\mathrm{IN}}{\mathrm{IN}}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	I Differential input	Differential input clock. Input stage is sensitive and has a wide common mode range. Therefore, almost any type of differential signal can drive this input (LVPECL, LVDS, CML, HSTL). Since the input is high-impedance, it is recommended to terminate the PCB transmission line before the input (e.g. with $100-\Omega$ across input). The input can also be driven by a single-ended signal, if the complementary input is tied to a dc reference voltage (e.g. $\mathrm{V}_{\mathrm{CC}} / 2$). The inputs deploy an ESD structure protecting the inputs in case of an input voltage exceeding the rails by more than $\sim 0.7 \mathrm{~V}$. Reverse biasing of the IC through this inputs is possible and must be prevented by limiting the input voltage < VDD
$\begin{aligned} & \text { S0 } \\ & \text { S1 } \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	I (with $60-\mathrm{k} \Omega$ pullup)	Select mode of operation. Defines the output configuration of Y 0 and Y 1 . Each pin offers three different configurations: tied to GND (logic 0), external 60-k pulldown resistor (pull to $\mathrm{V}_{\mathrm{DD}} / 2$) or left floating (logic 1); see Table 1 for details
Y1	7	O	LVCMOS clock output. This output provides a copy of IN or a divided down copy of clock IN based on the selected mode of operation: S0, S1, and EN. Also, this output can be disabled by tying VDD1 to GND.
$\frac{\mathrm{YO}}{\mathrm{YO}}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	O LVPECL	LVPECL clock output. This output provides a copy of IN or a divided down copy of clock IN based on the selected mode of operation: S1, S0, and EN. If Y0 output is unused, the output can simply be left open to save power and minimize noise impact to Y1.
VBB	4	O	Output bias voltage used to bias unused complementary input $\overline{\mathrm{N}}$ for single-ended input signals. The output voltage of VBB is $\mathrm{V}_{\mathrm{DD}}-1.3 \mathrm{~V}$. When driving a load, the output current drive is limited to about 1.5 mA .
$\mathrm{V}_{\text {SS }}$	5, 6, 14	Supply	Device ground
VDDPECL	1	Supply	Supply voltage PECL input + internal logic
VDD0	9, 12	Supply	PECL output supply voltage for output YO; YO can be disabled by pulling $\mathrm{V}_{\mathrm{DD}} 0$ to GND . Caution: In this mode no voltage from outside may be forced because internal diodes could be forced in a forward direction. Thus, it is recommended to leave the output disconnect
VDD1	8	Supply	Supply voltage CMOS output; The CMOS output can be disabled by pulling VDD1 to GND. Caution: In this mode no voltage from outside may be forced, because internal diodes could be forced in forward direction. Thus, it is recommended to leave Y1 unconnected, tied to GND or terminated into GND

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER, LVPECL I/O + ADDITIONAL LVCMOS OUTPUT

control pin settings

The CDCM1802 has three control pins, S0, S1, and the enable pin (EN) to select different output mode settings. All three inputs (S0, S1, EN) are 3-level inputs. In addition, the EN input allows disabling all outputs and place them into a high-z (or tristate) output state when pulled to GND.

Figure 1. Control Pin Setting for Example
Each control input incorporates a $60-\mathrm{k} \Omega$ pullup resistor. Thus, it is easy to choose the input setting by designing a resistor pad between the control input and GND. To choose a logic zero, the resistor value must be zero. Setting the input high requires leaving the resistor pad empty (no resistor installed). For setting the input to $\mathrm{V}_{\mathrm{DD}} / 2$, the installed resistor needs a value of $60 \mathrm{k} \Omega$ with a tolerance better or equal to 10%.

Table 1. Selection Mode Table

					LVPECL
LVCMOS					
MODE	EN	$\mathbf{S 1}$	$\mathbf{S 0}$	Y0	Y1
0	0	X	X	Off (high-z)	Off (high-z)
1	$\mathrm{~V}_{\mathrm{DD}} / 2$	0	$\mathrm{~V}_{\mathrm{DD} / 2}$	$\div 1$	$\div 1$
2	$\mathrm{~V}_{\mathrm{DD}} / 2$	$\mathrm{~V}_{\mathrm{DD}} / 2$	1	$\div 1$	$\div 2$
3	1	0	0	$\div 1$	$\div 4$
4	$\mathrm{~V}_{\mathrm{DD}} / 2$	0	1	$\div 2$	$\div 2$
5	1	0	1	$\div 2$	$\div 4$
6	$\mathrm{~V}_{\mathrm{DD}} / 2$	0	0	$\div 4$	$\div 4$
7	$\mathrm{~V}_{\mathrm{DD}} / 2$	1	0	$\div 4$	$\div 8$
8	$\mathrm{~V}_{\mathrm{DD}} / 2$	$\mathrm{~V}_{\mathrm{DD} / 2}$	$\mathrm{~V}_{\mathrm{DD}} / 2$	$\div 8$	$\div 1$
9	1	1	0	$\div 8$	$\div 4$
10	1	1	1	Off (high-z)	$\div 4$

NOTE: The LVPECL outputs are open emitter stages. Thus, if you leave the unused LVPECL output YO unconnected, then the current consumption is minimized and noise impact to remaining outputs is neglectable. Also, each output can be individually disabled by connecting the corresponding VDD input to GND.
absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

V_{DD}	Supply voltage	-0.3 V to 3.8 V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	-0.2 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V}\right)$
V_{O}	Output voltage	-0.2 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V}\right)$
$\mathrm{Yn}, \overline{\mathrm{Yn}, \text { IOSD }}$	Differential short circuit current	Continuous
ESD	Electrostatic discharge (HBM $1.5 \mathrm{k} \Omega, 100 \mathrm{pF})$	$>2000 \mathrm{~V}$
	Moisture level 16-pin QFN package (solder reflow temperature of $\left.235^{\circ} \mathrm{C}\right) \mathrm{MSL}$	1
$\mathrm{~T}_{\text {ttg }}$	Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	$125^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

| | MIN | TYP | MAX |
| :--- | ---: | ---: | :---: | UNIT | U |
| :--- |
| Supply voltage, V_{DD} |
| Uupply voltage, V_{DD} (only functionality) |
| Operating free-air temperature, T_{A} |
| 2.375 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVPECL INPUT IN, $\overline{\text { IN }}$						
$\mathrm{f}_{\text {clk }}$	Input frequency		0		800	MHz
V_{CM}	High-level input common mode		1		$\mathrm{V}_{\text {DD }}$-0.3	V
VIN	Input voltage swing between IN and $\overline{\mathrm{N}}$, See Note 1		500		1300	mV
$\mathrm{V}_{\text {IN }}$	Input voltage swing between IN and $\overline{\mathrm{N}}$, See Note 2		150		1300	mV
In	Input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or 0 V			± 10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Input impedance		300			$\mathrm{k} \Omega$
C_{1}	Input capacitance at IN, $\overline{\mathrm{IN}}$			1		pF
LVPECL OUTPUT DRIVER Y0, $\overline{\mathrm{YO}}$						
${ }^{\text {f }}$ ¢1k	Output frequency, See Figure 4		0		800	MHz
V OH	High-level output voltage	Termination with 50Ω to $\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$	VDD-1.18		$\mathrm{V}_{\mathrm{DD}}-0.81$	V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	Termination with 50Ω to $\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}$ 1.98		V_{DD}-1.55	V
V_{O}	Output voltage swing between Y and $\overline{\mathrm{Y}}$, See Figure 4	Termination with 50Ω to $\mathrm{V}_{\text {D }}-2 \mathrm{~V}$	500			mV
IOZL	Output 3-state	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$			5	$\mu \mathrm{A}$
IOZH	Output 3-state	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$			10	$\mu \mathrm{A}$
t_{r} / t_{f}	Rise and fall time	20% to 80% of VOUTPP, see Figure 9	200		350	ps
tDuty	Output duty cycle distortion, See Note 3	Crossing point-to-crossing point distortion	-50		50	ps
$\mathrm{t}_{\text {sk }}(\mathrm{pp})$	Part-to-part skew	Any Y0, See Note A in Figure 8		50		ps
C_{O}	Output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}$ or GND		1		pF
LOAD	Expected output load			50		Ω

CDCM1802

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER, LVPECL I/O + ADDITIONAL LVCMOS OUTPUT
 SCAS759 - APRIL 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVPECL INPUT-TO-LVPECL OUTPUT PARAMETER					
tpd(lh) Propagation delay rising edge	VOX to VOX	320		600	ps
$t_{\text {pd(hl) }}$ Propagation delay falling edge	VOX to VOX	320		600	ps
$\mathrm{t}_{\text {sk(p) }}$ LVPECL pulse skew, See Note B in Figure 8	VOX to VOX			100	ps

NOTES: 1. Is required to maintain ac specifications

2. Is required to maintain device functionality
3. For a $800-\mathrm{MHz}$ signal, the $50-\mathrm{ps}$ error would result into a duty cycle distortion of $\pm 4 \%$ when driven by an ideal clock input signal.

LVCMOS OUTPUT PARAMETER, Y1

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {f }}$ clk	Output frequency, see Note 4 and Figure 5			0		200	MHz
tskLVCMOS(0)	Output skew between the LVCMOS output Y1 and LVPECL output Yo	VOX to VDD/2, Se	gure 8		1.6		ns
$\mathrm{t}_{\text {sk(pp) }}$	Part-to-part skew	Y1, See Note A in	re 8		300		ps
VOH	High-level output voltage	$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{l}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.1$			V
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{IOH}=-6 \mathrm{~mA}$	2.4			
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-12 \mathrm{~mA}$	2			
VOL	Low-level output voltage	$V_{D D}=$ min to $m a x$	$\mathrm{l}^{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.1	V
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=6 \mathrm{~mA}$			0.5	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.8	
IOH	High-level output current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$		-29		mA
IOL	Low-level output current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$		37		mA
loz	High-impedance state output current	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ or 0 V			± 5	$\mu \mathrm{A}$
Co	Output capacitance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			2		pF
Load	Expected output loading, see Figure 10				10		pF
tDuty	Output duty cycle distortion, see Note 5	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$		-150		150	ps
${ }^{\text {tpd (Ih) }}$	Propagation delay rising edge from IN to Y 1	VOX to $\mathrm{V}_{\mathrm{DD}} / 2$ load	ee Figure 10	1.6		2.6	ns
$t_{\text {pd(hl) }}$	Propagation delay falling edge from IN to Y1	VOX to $\mathrm{V}_{\mathrm{DD}} / 2$ load	ee Figure 10	1.6		2.6	ns
tr_{r}	Output rise slew rate	20\% to 80% of swi	see Figure 10	1.4	2.3		V/ns
$\mathrm{tf}^{\text {f }}$	Output fall slew rate	80\% to 20% of swi	see Figure 10	1.4	2.3		V / ns

NOTES: 4. Operating the CDCM1802 LVCMOS output above the maximum frequency will not cause a malfunction to the device, but the Y1 output signal swing will not achieve enough signal swing to meet the output specification. Therefore, the CDCM1802 can be operated at higher frequencies, while the LVCMOS output Y1 becomes unusable.
5. For a $200-\mathrm{MHz}$ signal, the 150 -ps error would result in a duty cycle distortion of $\pm 3 \%$ when driven by an ideal clock input signal.

jitter characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tjitterLVPECL	Additive phase jitter from input to LVPECL output YO, See Figure 2	12 kHz to 20 MHz , fout $=250 \mathrm{MHz}$ to 800 MHz , divide by 1 mode			0.15	ps rms
		50 kHz to 40 MHz , fout $=250 \mathrm{MHz}$ to 800 MHz , divide by 1 mode			0.25	
$\mathrm{t}_{\mathrm{j} i t t e r L V C M O S}$	Additive phase jitter from input to LVCMOS output Y1, See Figure 3	$12 \mathrm{kHz} \text { to } 20 \mathrm{MHz}, \mathrm{f}_{\text {out }}=250 \mathrm{MHz} \text {, }$ divide by 1 mode			0.25	ps rms
		$50 \mathrm{kHz} \text { to } 40 \mathrm{MHz} \text {, fout }=250 \mathrm{MHz} \text {, }$ divide by 1 mode			0.4	ps rms

Figure 2

ADDITIVE PHASE NOISE
vs
FREQUENCY OFFSET FROM CARRIER - LVCMOS

Figure 3

CDCM1802

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER, LVPECL I/O + ADDITIONAL LVCMOS OUTPUT
 SCAS759 - APRIL 2004

jitter characteristics (continued)

supply current electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNITS
IDD	Supply current	Full load	All outputs enabled and terminated with 50Ω to VDD - 2 V on LVPECL outputs and 10 pF on LVCMOS output, $\mathrm{f}=800 \mathrm{MHz}$ for LVPECL outputs and 200 MHz for LVCMOS, $V_{D D}=3.3 \mathrm{~V}$		100		mA
		No load	Outputs enabled, no output load, $f=800 \mathrm{MHz}$ for LVPECL outputs and 200 MHz for LVCMOS, VDD $=3.6 \mathrm{~V}$			85	
IDDZ Supply current, 3-state	Supply current, 3-state		All outputs 3-state by control logic, $\mathrm{f}=0 \mathrm{~Hz}, \mathrm{~V} \mathrm{DD}=3.6 \mathrm{~V}$			0.5	mA

NOTE: Input swing $=500 \mathrm{mV}$
Figure 6

Package Thermal Resistance

PARAMETER	TEST CONDITIONS	MIN	TYP
OJA	QFN-16 package thermal resistance with thermal vias in PCB, See Note 1	4-layer JEDEC test board (JESD51-7) with four thermal vias of 22-mil diameter each, airflow $=0 \mathrm{ft} / \mathrm{min}$	

NOTE 1: It is recommended to provide four thermal vias to connect the thermal pad of the package effectively with the PCB and ensure a good heat sink.

Example:

Calculation of the junction-lead temperature with a 4-layer JEDEC test board using four thermal vias:
$T_{\text {Chassis }}=85^{\circ} \mathrm{C}$ (temperature of the chassis)
$P_{\text {effective }}=I_{\max } \times \mathrm{V}_{\text {max }}=85 \mathrm{~mA} \times 3.6 \mathrm{~V}=306 \mathrm{~mW}$ (max power consumption inside the package)
$\Delta \mathrm{T}_{\text {Junction }}=\theta_{\mathrm{JA}} \times \mathrm{P}_{\text {effective }}=40.8^{\circ} \mathrm{C} / \mathrm{W} \times 306 \mathrm{~mW}=12.48^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Junction }}=\Delta \mathrm{T}_{\text {Junction }}+\mathrm{T}_{\text {Chassis }}=12.48^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}=97.48^{\circ} \mathrm{C}$ (the maximum junction temperature of $\mathrm{T}_{\text {die-max }}$
$=125^{\circ} \mathrm{C}$ is not violated)

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER, LVPECL I/O + ADDITIONAL LVCMOS OUTPUT

control input characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {su }}$	Setup time, S0, S1, and EN pin before clock IN		25			ns
th	Hold time, S0, S1, and EN pin after clock IN		0			ns
${ }^{\text {t }}$ (disable)	Time between latching the EN low transition and when all outputs are disabled (how much time is required until the outputs turn off)			10		ns
${ }^{\text {t }}$ (enable)	Time between latching the EN low-to-high transition and when outputs are enabled based on control settings (how much time passes before the outputs carry valid signals)			1		$\mu \mathrm{S}$
Rpullup	Internal pullup resistor on $\mathrm{S} 0, \mathrm{~S} 1$, and EN input		42	60	78	k Ω
$\mathrm{V}_{\mathrm{IH}(\mathrm{H})}$	Three level input high, S0, S1, and EN pin, see Note 1		$0.9 x \mathrm{~V}_{\mathrm{DD}}$			V
V IM(M)	Three level input MID, S0, S1, and EN pin		$0.3 \times \mathrm{V}_{\mathrm{DD}}$		$0.7 \times V_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{IL}(\mathrm{L})}$	Three level low, S0, S1, and EN pin				$0.1 \times \mathrm{V}_{\text {DD }}$	V
IIH	Input current, S0, S1, and EN pin	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$			-5	$\mu \mathrm{A}$
IIL	Input current, S0, S1, and EN pin	$\mathrm{V}_{1}=$ GND	38		85	$\mu \mathrm{A}$

NOTES: 1. Leaving this pin floating automatically pulse the logic level high to V_{DD} through an internal pullup resistor of $60 \mathrm{k} \Omega$.
bias voltage VBB over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VBB	Output reference voltage	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}-3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{BB}}=-0.2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-1.4$	$\mathrm{~V}_{\mathrm{DD}}-1.2$	V

Figure 7

NOTES: A. Part-to-part skew, $\mathrm{t}_{\mathrm{sk}}(\mathrm{pp})$, is calculated as the greater of:

- The difference between the fastest and the slowest $t_{p d}(\mathrm{LH}) \mathrm{n}$ across multiple devices
- The difference between the fastest and the slowest $t_{p d(H L) n}$ across multiple devices
B. Pulse skew, $\mathrm{t}_{\mathrm{sk}(\mathrm{p})}$, is calculated as the magnitude of the absolute time difference between the high-to-low ($\mathrm{t}_{\mathrm{pd}}(\mathrm{HL})$ and the low-to-high $\left(t_{p d}(\mathrm{LH})\right)$ propagation delays when a single switching input causes $Y 0$ to switch, $\mathrm{t}_{\mathrm{sk}}(\mathrm{p})=\left|t_{\mathrm{pd}}(\mathrm{HL})-\mathrm{t}_{\mathrm{pd}}(\mathrm{LH})\right|$. Pulse skew is sometimes referred to as pulse width distortion or duty cycle skew.

Figure 8. Waveforms for Calculation of $\mathrm{t}_{\mathbf{s k}(\mathrm{o})}$ and $\mathrm{t}_{\mathrm{sk}(\mathrm{pp})}$

Figure 9. LVPECL Differential Output Voltage and Rise/Fall Time

PARAMETER MEASUREMENT INFORMATION

Figure 10. LVCMOS Output Loading During Device Test

Figure 11. LVPECL Output Loading During Device Test

PCB design for thermal functionality

It is recommended to take special care of the PCB design for good thermal flow from the QFN-16 pin package to the PCB. The current consumption of the CDCM1802 is fixed. JEDEC JESD51-7 specifies thermal conductivity for standard PCB boards.
Modeling the CDCM1802 with a 4-layer JEDEC board (including four thermal vias) results into $37.5^{\circ} \mathrm{C}$ max temperature with a θ_{JA} of $40.84^{\circ} \mathrm{C}$ for $25^{\circ} \mathrm{C}$ ambient temperature.
To ensure sufficient thermal flow, it is recommended to design with four thermal vias in applications.

PARAMETER MEASUREMENT INFORMATION

Figure 12. Recommended Thermal Via Placement
See the SCBA017 and the SLUA271 application notes for further package related information.

APPLICATION INFORMATION

LVPECL receiver input termination

The input of the CDCM1802 has high impedance and comes with a very large common mode voltage range. For optimized noise performance it is recommended to properly terminate the PCB trace (transmission line).

Additional termination techniques can be found in the following application notes: SCAA062 and SCAA059.
http://focus.ti.com/docs/apps/catalog/resources/appnoteabstract.jhtml?abstractName=scaa062
http://focus.ti.com/docs/apps/catalog/resources/appnoteabstract.jhtml?abstractName=scaa059

Figure 13. Recommended AC-Coupling LVPECL Receiver Input Termination

Figure 14. Recommended DC-Coupling LVPECL Receiver Input Termination

APPLICATION INFORMATION

Figure 15. Typical Application Setting for Single-Ended Input Signals Driving the SN0305042

device behavior during RESET and control pin switching

output behavior when enabling the device ($\mathrm{EN}=0 \Rightarrow 1$)
In disable mode ($\mathrm{EN}=0$), all output drivers are switched in high- Z mode. The bandgap, current references, the amplifier, and the S0 and S1 control inputs are also switched off. In the same mode, all flip-flops will be reset. The typical current consumption is likely below $500 \mu \mathrm{~A}$ (to be measured).
When the device will be enabled again it takes maximal $1 \mu \mathrm{~s}$ for the settling of the reference voltage and currents. During this time the output Y 0 and $\overline{\mathrm{Y} 0}$ drive a high signal. Y 1 is unknown (could be high or low). After the settle time, the outputs go into the low state. Due to the synchronization of each output driver signal with the input clock, the state of the waveforms after enabling the device look like those shown in Figure 16. The inverting input and output signal is not included. The $Y: / 1$ waveform is the undivided output driver state.

CLOCK BUFFER WITH PROGRAMMABLE DIVIDER,

 LVPECL I/O + ADDITIONAL LVCMOS OUTPUT

Signal State After the Device is Enabled (IN = Low)

Signal State After the Device is Enabled (IN = High)
Figure 16. Waveforms

APPLICATION INFORMATION

enabling a single output stage
If a single output stage becomes enabled:

1. $Y O$ will either be low or high (undefined).
2. $\overline{Y 0}$ will be the inverted signal of YO .

With the first positive clock transition, the undivided output becomes the input clock state. If a divide mode is used, the divided output states are equal to the actual internal divider. The internal divider does not get a reset while enabling single output drivers.

Figure 17. Signal State After an Output Driver Becomes Enabled While $\operatorname{IN}=0$

Figure 18. Signal State After an Output Driver Becomes Enabled While IN = 1

MECHANICAL DATA

Also see the following two application notes for further package related information.
http://focus.ti.com/lit/an/scba017c/scba017c.pdf
http://focus.ti.com/lit/an/slua271/slua271.pdf

NOTES: A. All linear dimengions ore in millimeters.
B. This draming is aubject to ehorge without notice
c. [puad Fatpack, No-leade (QRN) packoge manfiguration.
D. The package themal perfarmance may be enhoriced by bonding the thermal die pad to an axternal thermal plana.
E. Fals within EIFEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

